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The energy spectra of secondary neutrons in the energy region
between 100 and 450 MeV emitted by targets bombarded by 450-MeV protons
were measured using a proton recoil spectrometer. Secondary proton
measurements were also made with this spectrometer. The measurements
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between O and 6P . Two general target thicknesses were employed: thin
targets in which the primary beam lost little energy and in which further
interaction of the secondary particle was small, and thick targets in
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I. INTRODUCTION

In recent years several theoretical calculations have been made to
predict the cross section for production of secondary particles in the
interaction between high energy nucleons and complex nuclei.r~? These
calculations are based on models which involve assumptions which cannot
be fully justified theoretically; therefore, justification relies heavily
on comparisons with experiment. There are numerous experiments, partic-
ularly for secondary protons and mesons, with which checks can be made;19-14
however, little data exists above 200 MeV which systematically covers
certain parameters such as atomic weight, angle, or energy. To provide
data which systematically covers a range of elements, angles, and incident
energies for comparison with the calculations, a series of experiments
has been performed to investigate the secondary nucleon production in
the interaction of primary protons bombarding complex nuclei.®~17  The
energy spectra of neutrons and protons presented here cover the region
between 100 and 450 MeV from targets bombarded by 450 MeV protons and were
measured for a number of elements ranging in atomic weight from beryllium
to bismuth. Two categories of target thicknesses were studied: thin tar-
gets in which the primary beam lost little energy and the nuclear inter-
action mean free path is much larger than the target thickness, and
thick targets in which the primary beam stopped or lost a large fraction
of its energy and the target thickness was of the same order as the nuclear
mean free path. The primary proton energy is well above the meson produc-
tion threshold and data should be of particular value for comparison with
calculations which include meson production and its effects on the nucleon

production cross sections.



These measurements, made at the University of Chicago synchrocyclo-
tron, are similar to those reportedlv;18 for 160-MeV proton bombarding
energy and the data was recorded and analyzed using a proton recoil
spectrometer and analysis techniques similar to those employed in the
160-MeV measurements. In this paper, the experimental set-up will be
described only briefly with emphasis on the modifications to the previous
spectrometer and analysis techniques. For details of the methods used to

analyze the data, the reader is referred to references 17 and 18.

IT. EXPERIMENTAL SET-UP
The proton beam from the synchrocyclotron was focused with two
quadrupole magnets to a spot size of approximately 3 cu® on the target,
as shown in Fig. 1, and the spectrometer was placed at the appropriate
angle behind the target. By using stochastic beam extraction, a duty
cycle of approximately 25% was obtained.
The energy of the beam was measured using a range telescope with Cu

absorbers. Using the tables of Barkas and Berger19

and applying the
multiple scattering correction of Janni,?° the energy was found to be
450.4 £ 1 MeV. This corresponds to an effective range in Cu, including

scintillators and light covers, of 144.0 gm/cm?.

The incident proton beam was integrated with helium-filled ion

1 82

chambers®! calibrated using the 12C(p,pn) reaction. To accomplish this
calibration a plastic scintillator larger than the beam spot was placed
at the target position and exposed to the beam passing through the ion
chambers. After exposure, the scintillator was placed on a photomulti-

plier tube and the activity induced by the C(p,pn) reaction was calculated
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Fig. 1. Plan view of experimental set-up for measuring the neutron
and proton spectra from targets bombarded by a 450-MeV proton beam.



from the positron counting rate. The cross section used for this calibra-
tion was 32.3 mb. A correction was made for the positrons with energies
below the counting threshold. This calibration was compared with the
value obtained by extrapolating a calibration obtained using a 160-MeV
proton beam monitored with a Faraday cup, and the two values were found

to agree to within 5%.

IITI. SPECTROMETER
The measurements were made using the proton recoil spectrometer shown
in Fig. 2. The neutrons from the target impinged on the polyethylene
radiator and the recoiling protons passed through the organic AE/AX

counter and produced pulses with a mean height
T
h~ o (at/aB)(aE/ax)ax , (1)

where d£/dE is the scintillation efficiency and T is the thickness of the
counter. Since for protons dE/dX and. dﬂ/dE are monotonically decreasing
functions of energy below approximately 2 BeV, the recoil proton energy
may be determined from a measurement of pulse height. Fig. 3 is a plot

of the pulse height from the AE/AX counter as a function of the energy of
the protons incident upon the scintillator. The relationship was obtained
by exposing the AE/AX counter to protons of various energies obtained by
degrading the 450-MeV proton beam with copper absorbers. The energyEp

of the recoil proton is related to the energy En of the incident neutron

by

- 2 . 2
Ep =E_ cos o/(1 + En31n? 6/Mc? ) (2)
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where 8 is the angle between the path of the incident neutron and the
recoil proton and M is the mass of a nucleon.

Counters 3 and 6 are placed in coincidence with the AE/AX counter to
reduce backgrounds from gamma rays and neutrons. Counter 6 also ensures
that recoil protons which do not penetrate the AE/AX counter are not
counted.

The counters in front of the radistor were placed in anti-coincidence
with the AE/AX counter and served to reject counts due to protons present
in the incident beam. In order to reduce the leak-through in the anti-
coincidence channel due to the dead time caused by high random rates in
the anti-coincidence counters, two counters were employed in a "neither/
nor" configuration. Background measurements were made by replacing the
polyethylene radiator with a carbon radiator containing the same amount
of carbon as the polyethylene radiator. Proton spectra were measured by
removing the radiator and the anti-coincidence requirements imposed by
counters 1 and 2.

A severe background problem arose from mesons and high-energy
electrons produced in the target, and, in the case of neutron measurements,
in the radiator. Due to the large resolution of the spectrometer many of
the pulses produced in the AE/AX counter by these particles were of the
same size as the pulses produced by the high-energy recoil protons.

In the case of the neutron measurements, the production of these back-
ground counts was somewhat different in polyethylene radiator than in
the carbon radiator and these effects could not be entirely eliminated
by a background subtraction. In the case of proton measurements no back -

ground measurements were made for thick targets and the thin-target
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background measurements were made with the target out, resulting in an
uncompensated residual background from the mesons and electrons. To
reduce the number of these lighter particles which were counted, a
Cerenkov counter with a threshold of p = 0.67 was placed in front of the
AE/AX counter and was connected in anti-coincidence. An event 1§3H56
was considered valid and a multi-channel analyzer was gated on and the
pulse from the AE/AX counter was stored.

The AE/AX counter was a plastic scintillator®® 3.0 cm-thick and
6.35 cm in diameter optically coupled to the photomultiplier tube with
a light pipe glued to the cylindrical edge of the scintillator. The
uniformity of light collection was improved by painting the scintillator
with white paint®* and was found to vary less than 5% over the volume of

the scintillator.

IV. DATA ANALYSIS
Important considerations in the design of the spectrometer are the
pulse height and energy resolution. The resolution of a distribution is
defined as:

_ full width at half maximum of distribution (FWHM)

R centroid of distribution

The pulse-height resolution of the spectrometer for neutrons is that of
the distribution obtained by exposing the spectrometer to a monoenergetic
beam of neutrons. The important factors determining pulse height reso-
lution are:

1. The range of scattering angles between the neutron and recoil

protons .
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2. The variety of energy losses in the radiator due to the various
path lengths traveled by recoil protons.
3. Fluctuations of energy loss by the recoil protons in the
AE/AX scintillator, 25,28

The energy resolution is defined as the resolution of the distribu-
tion obtained by transforming the above pulse-height distribution into
an energy resolution using a one-to-one transformation between pulse
height and energy. The contributions due to factors 1 and 2 can be
readily controlled through the design of the spectrometer, and at the
expense of efficiency can be reduced to small values. The contribution
due to the third factor is determined by the thickness of the AE/AX
scintillator and decreases slowly with increasing scintillator thickness.
For any reasonable choice of scintillator thickness the energy loss
fluctuations for the higher energy protons were still large and were the
determining factor on the practical resolution of the spectrometer. Due
to the slow variation of dE/dX with proton energy at high proton energies

the energy resolution was considerably larger. The spectrometer was

designed so that the combined contributions from factors 1 and 2 were
somewhat less than the maximum from 3.

The data were analyzed using the Simple Linear Optimization Procedure

(SIOP)®”7 code in the mamner described previously.'7,18

Basically, the
code is supplied with:

1. The raw pulse-height data.

2. The response functions of the spectrometer.

The response functions are the probability distributions that a particu-

lar energy particle will produce a pulse of a particular height.
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Since it is not convenient to determine these distributions experi-
mentally, they were calculated for the neutron measurements using a Monte
Carlo code described previously®® and combined with a calculation to incor-
porate the effect of energy loss fluctuations of the recoil protons in
the AE/AX scintillator. Typical results of this calculation are shown
in Fig. 4. The total efficiency of the spectrometer for detecting
neutrons was also calculated and the results for several different neutron
energies are shown in Fig. 5. Proton spectra measurements were made by
removing the radiator and anti-coincidence counters. 1In this case the
response function is determined almost entirely by the energy loss fluctua-
tions in the AE/AX counter. However, in the case of the thin-target
measurements in which the results are expressed as cross section, the
distribution of energy losses of the secondary protons in the target is
included in the response function so that the results are corrected to
"zero-thickness targets." The pulse-height resolution of the spectrometer
as a function of energy is given in Fig. 6 for protons.

The SIOP code calculates the range of energy spectra which is con-
sistent with the raw data and the response functions. The energy response
function associated with the output spectra is a Gaussian with a width
specified by the user, and the results are presented in the form of a
band which brackets the 68% confidence interval. The width of the con-
fidence interval is determined Jjointly by the counting statistics, the
error in determining the response functions, and the closeness of it
which is obtained between the desired Gaussian functions and a linear

combination of the response functions.
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Fig. 4. Calculated pulse height distributions for monoenergetic
neutron beams incident on the spectrometer with the 1.33 g/cr® radiator.
The calculation was made using the Monte Carlo technique discussed in
the text.
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V. RESULTS

Results from the neutron spectrometer measurements on both thick and
thin targets are given in Figs. 7-14. These data were obtained using
polyethylene radiators with thicknesses listed in Table I. Although in
some measurements a 2.62-cm-thick radiator was used, most energy spectra
were measured using both a 1.33- and a 4.30-em-thick radiator and the
results from these separate measurements combined in a statistically con-
sistent manner to obtain the final energy spectrum. The energy resolution
associated with these neutron energy spectra is Gaussian with a FWHM of
25%.

At high energies the effects of the gamma rays and meson leak-
through were evident in the final spectra,and in the cases where the
distortion was large the high-energy portion of the graph was omitted.

In the cases where the distortion was small the graph was extrapolated
into the distorted region as indicated by the dashed lines. At low
energies the uncertainty in the spectra increased due to the large energy
loss suffered by the recoll proton in the radiator and counters. The
results were omitted in regions where the uncertainty was excessive.

Figure 7 shows the secondary neutron production cross section for
a thin carbon target atlaboratory angles of 20, 30, and 45°. These data
show a broad peak in the cross section which appears at about 320 MeV
for the 2P data, and at lower energies and increasingly less proncunced
at greater angles of observation. This peak is seen also in the 6.73 g/cm?
aluminum shown in Fig. 8, although the peak is less well defined at
either 20°P or at 30°. Similarly, the results from the 7.68 g/cm® cobalt

target also show this peak.
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Fig. 7. Secondary neutron production cross section at 20, 30, and
45° for carbon bombarded by 450 MeV. The energy resolution associated
with the spectra is Gaussian with a FWHM of 25%. The lines enclose the
68% confidence interval and include statistical uncertainties, uncertain-
ties in calculating the efficiency of the spectrometer and the degree to
which the computer program is not able to fit the spectrometer response
functions with the Gaussian energy resolution functions.
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Table I

Radiator Thickness

(cm)

Energy of proton which loses
10% of its energy in radiator

1.33
2.62

4.30

100
150

200
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This peak can be identified as due to the "quasi-elastic" scattering
process, and 1s characteristic of both the neutron and proton spectra
taken at angles below 450 . It is attributed to a process in which the
incident particle interacts directly with an individual nucleon within
the target nucleus and the product nucleon emerges with essentially the
same energy and at the same angle as for an interaction between free
nucleons. For light nuclei, the probability is high that the emerging
nucleon does not undergo a further interaction with other target nuclei,
and the peak is clearly defined. For heavy nuclei, these particles inter-
act with other nucleons and the peak is characteristically broadened and
shifted downward in energy as seen in Figs. 8 and 9.

Thick-target secondary neutron data are presented in Figs. 10-1k.

In these measurements, the laboratory angle was measured between the
incident beam axis and the spectrometer axis at their point of intersec-
tion in the rear face of the target. The yileld for all neutron energies
was based upon the calculation of spectrometer efficiency assuming all
particles were formed at the center of the target. The distance from
the center of the radiator to this point is given in Table II for each
of the measurements.

Figure 10 shows the secondary neutron energy spectra for a 67.7 g/cm?
carbon target and an 89.2 g/cm? aluminum target at an angle of observa-
tion of 10°. The primary protons lost approximately 200 and 240 MeV,
respectively, in passing through these targets.

Figures 11 and 12 show neutron yield spectra at 20 and 45° for tar-

gets in which a normally incident proton beam would lose approximately
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Table ITI. Parameters of Neutron Measurements

Element Thickness Anglea Distance to Centerb
(g/cm?) (deg) of target (cm)

Cross Sections

carbon 5.81 20 57.8
carbon 5.81 30 57.7
carbon 5.81 45 574
aluminum 6.73 20 57.4
aluminum 6.73 30 45,2
cobalt 7.68 20 56.7
Yields
carbon 67.7 10 75.7
carbon 23.0 20 62.5
aluminum 89.2 10 72.7
aluminum 33.6 45 60.1
aluminum 26.9 20 61.0
aluminum 26.9 L5 59.9
aluminum - 13.4 45 57.2
cobalt 165 0 66.1
cobalt 165 10 66.0
cobalt 165 20 65.6
cobalt 30.0 45 58.0

SThe angles are measured between the primary proton beam line and
the spectrometer axis. The targets were inclined so that a perpendicular
to the target plane made an angle of 15, 22.5 and 30 deg to the beam axis
for the spectrometer angles of 30, 45, and 60 deg, respectively. The
beam, target and spectrometer axes lay in the same plane.

bThis distance is measured from the center of the target to the
effective center of the radiators.
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60 MeV. In Fig. 13, the yields at 45° for aluminum targets of 33.6 and
13.4 g/cmP are compared.

In contrast to the "thin" targets, the larger energy loss of the
incident proton beam within the target means that the observed particles
include both secondary particles from interactions with incident protons
of a wide range in energies and also tertiary particles.

Secondary neutron production from a 165 g/cm? cobalt target is
shown in Fig. 14 for angles of 0, 10, and 20°. This target thickness
is about 14% greater than the mean range of the incident proton beam.

Measurements of secondary proton production were made by removing
the radiator and anti-coincidence counters fram the spectrometer. Proton
cross~-section measurements utilized targets in which the primary proton
beam lost 6.7 MeV in traversing the target at normal incidence (see
Table III). The calculated response functions took account of the energy
loss of the secondary protons in the targets to produce cross sections
corrected to "zero target thickness." The energy resolution associated
with the spectra is Gaussian with a FWHM of 20%.

Figures 15-17 show secondary proton production cross sections at
angles of 30, 45, and 60° for various targets. For angles greater than
30° the target was turned through an angle of one-half the angle of obser-
vation about an axis passing through the same point. The quasi-elastic
peak seen in the 30° cross-section data decreases in mean energy with
increasing angle of observation and broadens with nuclear size.

Figures 18-21 compare proton yields for several angles of observa-
tion from thick targets of C, Cu, Pb, Al, and Co. Since the low-energy

secondary protons lost considerable energy in escaping the target, no
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Table ITITI. Parameters of Proton Measurementsa

Element Thickness Anglesb
(g/cnf) (deg)

Cross Sections

beryllium 2.65 30,45,60
carbon 2.48 30,45,60
aluminum 2.80 30,45,60
cobalt 3.22 30,45,60
bismuth k.50 30,45,60
Yields
carbon 5.81 20,30,45
aluminum 6.73 20
copper 5.65 30,45,60
cobalt 165 0
cobalt 7.68 20
lead 3.60 30,45,60

8The distance from the back counter of the spectrometer
to the center of the back face of the target was Th.82 cm.

bThis distance is measured from the center of the target
to the effective center of the radiators.
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attempt was made to include this loss in the response functions and the
spectra represent the energy of the protons as they leave the rear face
of the targets. Although the 3.6 g/cm® Pb target was "thin," it had a
non-standard thickness and, therefore, the data from this target is
presented as a yield.

Figure 22 shows the proton yield at (® from a 165 g/cm® cobalt target.
Since the primary proton beam vas completely stopped in this target, the
observed yield is due to tertiary protons.

In those data in which there is evidence for a quasi-elastic peak,
the energy of the peak is lower than would be‘expected on the basis of a
simple nucleon-nucleon interpretation. The nuclear cascade description
of high-energy interactions as typified by the Monte Carlo calculations
of Bertini® would indicate that at lower energies and for P measure-
ments the emerging nucleon, whether proton or neutron, can have essen-
tially the energy of the incident proton. The peak as a function of angle

should appear at energies given approximately by

Eoc0529 (3)
T = -V 3
(1 + Eosinge/Emcg) ©

where 8 = the angle of observation, m = the mass of the nucleon, Vo = the
average nuclear potential of the bound nucleons, EO = TO + Vo’ and T and

TO = kinetic energy of emerging particle and the incident particles,
respectively. Data at higher energies for Be targets®® show that the
mmh@np%katooakoammmsatalmwremm@} 680-MeV protons pro-
duce a neutron peak at 610 MeV and 480-MeV protons show a neutron peak at
395 MeV. The internal beam of the cyclotron was used for these measurements

so that multiple traversal of the target by the bombarding protons was
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possible. The magnitude of the consequent energy reduction has been esti-
mated by Kiselev and Fliagin®® as 20 to25 MeV. These data, therefore,
indicate a net shift to lower energies of 55-60 MeV. Such a reduction in
the neutron energy at 0° is consistent with the mean peak energy reduction
seen in the data reported here.

Multiple scattering and cascading not only considerably broaden the
peak but also lower its mean energy. Secondary meson production also
causes a reduction in the peak energy, particularly at the higher bom-
barding energies. Indeed, preliminary calculations, using Bertini's
Monte Carlo programs in which secondary meson production was or was not
included, indicate that meason production must be taken into account in
order to obtain correlation with the observed spectra.®?!

These :data cover a wide range of atomic number and angles and pro-
vide information to make detailed comparisons with stochastic calcula-
tions. Comparisons of these data with the calculations'cited above show

qualitative agreement with theory.
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